Emerging Advanced Cryptography Opportunities and Challenges

Presented* at

The Future Cryptography Conference

May 21, 2025 | Tallinn (Estonia)

* Luís Brandão: NIST Associate (Foreign Guest Researcher[†], Contractor from Strativia). Expressed opinions are from the speaker. [†]Cryptographic Technology Group, Information Technology Laboratory, (United States) National Institute of Standards and Technology (NIST).

About this Presentation

1. Aitäh kutse esst esinema @ The Future Cryptography Conference

Thank you for the invitation

About this Presentation

1. Aitäh kutse esst esinema @ The Future Cryptography Conference

Thank you for the invitation

- 2. Goals:
 - 2.1 Provide an intro/context about NIST (crypto)*
 - 2.2 Disseminate the Threshold Call (an expedition into advanced cryptography)
 - 2.3 Suggest a few topics of anticipated interest

About this Presentation

1. Aitäh kutse esst esinema @ The Future Cryptography Conference

Thank you for the invitation

- 2. Goals:
 - 2.1 Provide an intro/context about NIST (crypto)*
 - 2.2 Disseminate the Threshold Call (an expedition into advanced cryptography)
 - 2.3 Suggest a few topics of anticipated interest
- 3. The slide-deck will be available

1. Intro on NIST Crypto

2. Threshold Call and related explorations

3. Thoughts on (Emerging?) Opportunities and Challenges

1. Intro on NIST Crypto

2. Threshold Call and related explorations

3. Thoughts on (Emerging?) Opportunities and Challenges

National Institute of Standards and Technology

- **Non-regulatory** federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.

NIST name and address plate (source: nist.gov)

National Institute of Standards and Technology

- ▶ Non-regulatory federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.

NIST name and address plate (source: nist.gov)

▶ **NIST** ($\approx 7 \times 10^3$ staff): Laboratories \rightarrow Divisions \rightarrow Groups

National Institute of Standards and Technology

- **Non-regulatory** federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.


```
NIST name and address plate (source: nist.gov)
```

▶ NIST ($\approx 7 \times 10^3$ staff): Laboratories \rightarrow Divisions \rightarrow Groups

→ Cryptographic Technology Group (CTG): research, develop, engineer, and produce guidelines, recommendations and best practices for cryptographic algorithms, methods, and protocols.

Activities in the "Crypto" Group

Legend: BC = Block Ciphers. CC = Circuit Complexity. Crypto = Cryptography. DS = Digital Signatures. EC = Elliptic Curves. FIPS = Federal Information Processing Standards. IR = Internal or Interagency (denoting that the public NIST report was developed internally at NIST or in an interagency collaboration, respectively. IRB = Interoperable Randomness Beacons. KM = Key Management. MPTC = Multi-Party Threshold Crypto). LWC = Lightweight Crypto. PEC = Privacy-Enhancing Crypto. PQC = Post-Quantum Crypto. RNG = Random-Number Generation. SP 800 = Special Publications in Computer Security.

More details at https://www.nist.gov/itl/csd/cryptographic-technology

Activities in the "Crypto" Group

- Public documentation: FIPS; Special Publications (SP 800); NIST Reports (IR).
- International cooperation: government, industry, academia, standardization bodies.

Legend: BC = Block Ciphers. CC = Circuit Complexity. Crypto = Cryptography. DS = Digital Signatures. EC = Elliptic Curves. FIPS = Federal Information Processing Standards. IR = Internal or Interagency (denoting that the public NIST report was developed internally at NIST or in an interagency collaboration, respectively. IRB = Interoperable Randomness Beacons. KM = Key Management. MPTC = Multi-Party Threshold Crypto). LWC = Lightweight Crypto. PEC = Privacy-Enhancing Crypto. PQC = Post-Quantum Crypto. RNG = Random-Number Generation. SP 800 = Special Publications in Computer Security.

More details at https://www.nist.gov/itl/csd/cryptographic-technology

Activities in the "Crypto" Group

Example recent publications:

- FIPS 202/3/4/...: PQC standards
- SP 800-232: Lightweight Crypto
- SP 800-227: KEM recommendations
- IR 8547: PQC transition
- IR 8214C: Threshold Call
- IR 8552: Accordion requirements
- ▶ **Public documentation:** FIPS; Special Publications (SP 800); NIST Reports (IR).
- International cooperation: government, industry, academia, standardization bodies.

Legend: BC = Block Ciphers. CC = Circuit Complexity. Crypto = Cryptography. DS = Digital Signatures. EC = Elliptic Curves. FIPS = Federal Information Processing Standards. IR = Internal or Interagency (denoting that the public NIST report was developed internally at NIST or in an interagency collaboration, respectively. IRB = Interoperable Randomness Beacons. KM = Key Management. MPTC = Multi-Party Threshold Crypto). LWC = Lightweight Crypto. PEC = Privacy-Enhancing Crypto. PQC = Post-Quantum Crypto. RNG = Random-Number Generation. SP 800 = Special Publications in Computer Security.

More details at https://www.nist.gov/itl/csd/cryptographic-technology

A variety of NIST Crypto Projects

- **PQC:** [standardization] "**post-quantum**" signatures and key-encapsulation
- **LWC:** [standardization] "lightweight" authenticated encryption, hash, XOF

 $\label{eq:Legend:LWC} \mbox{Legend:LWC} = \mbox{Lightweight Cryptography.} \ \mbox{MPTC} = \mbox{Multi-Party Threshold Cryptography.} \ \mbox{PEC} = \mbox{Privacy-Enhancing Cryptography.} \ \mbox{CP} = \mbox{PXC} = \mbox{Pxitography.} \ \mbox{CPC} = \mbox{Privacy-Enhancing Cryptography.} \ \mbox{CPC} = \mbox{Pxitography.} \ \mbox{CPC} = \mbox{Pxitography.} \ \mbox{CPC} = \mbox{Pxitography.} \ \mbox{Cryptography.} \ \mbox{CPC} = \mbox{Pxitography.} \ \mbox{Cryptography.} \ \mbox{CPC} = \mbox{Privacy-Enhancing Cryptography.} \ \mbox{Cryptography.} \ \mbox{Cryptography$

A variety of NIST Crypto Projects

- PQC: [standardization] "post-quantum" signatures and key-encapsulation
- **LWC:** [standardization] "lightweight" authenticated encryption, hash, XOF
- ▶ PEC: [exploratory] "privacy-enhancing" (advanced) features/functionalities
- MPTC: [exploratory] "multi-party threshold" schemes for crypto primitives
- warious others: https://www.nist.gov/itl/csd/cryptographic-technology

Legend: LWC = Lightweight Cryptography. MPTC = Multi-Party Threshold Cryptography. PEC = Privacy-Enhancing Cryptography. PQC = Post-Quantum Cryptography. XOF = eXtendable Output Function.

A variety of NIST Crypto Projects

- PQC: [standardization] "post-quantum" signatures and key-encapsulation
- **LWC:** [standardization] "lightweight" authenticated encryption, hash, XOF
- ▶ PEC: [exploratory] "privacy-enhancing" (advanced) features/functionalities
- MPTC: [exploratory] "multi-party threshold" schemes for crypto primitives
- warious others: https://www.nist.gov/itl/csd/cryptographic-technology

There is a vast area for developments in both Standardization and Exploratory projects

Legend: LWC = Lightweight Cryptography. MPTC = Multi-Party Threshold Cryptography. PEC = Privacy-Enhancing Cryptography. PQC = Post-Quantum Cryptography. XOF = eXtendable Output Function.

1. Intro on NIST Crypto

2. Threshold Call and related explorations

3. Thoughts on (Emerging?) Opportunities and Challenges

Multi-Party Threshold Cryptography: NIST Project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

https://csrc.nist.gov/projects/threshold-cryptography

Multi-Party Threshold Cryptography: NIST Project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- 2. Use **MPC** to perform needed operation (with split key), e.g., sign. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")

https://csrc.nist.gov/projects/threshold-cryptography

8/19

Multi-Party Threshold Cryptography: NIST Project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- 2. Use MPC to perform needed operation (with split key), e.g., sign. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")
- **"Threshold"** (f): Operation is secure if number of corrupted parties is $\leq f$.
- **Decentralized** trust about key (not reconstructed): avoids single-point of failure. https://csrc.nist.gov/projects/threshold-cryptography

The NIST Call for Multi-Party Threshold Schemes

A public call for input, to form a body of reference material:

- It deals with threshold schemes
- It stands at the threshold of advanced cryptography

The NIST Call for Multi-Party Threshold Schemes

A public call for input, to form a body of reference material:

- It deals with threshold schemes
- It stands at the threshold of advanced cryptography

Fits in the **"Reference Materials"** approach of the **exploratory** NIST projects on Privacy-Enhancing Cryptography (PEC) and Multi-Party Threshold Cryptography (MPTC).

The NIST Call for Multi-Party Threshold Schemes

A public call for input, to form a body of reference material:

- It deals with threshold schemes
- It stands at the threshold of advanced cryptography

Fits in the **"Reference Materials"** approach of the **exploratory** NIST projects on Privacy-Enhancing Cryptography (PEC) and Multi-Party Threshold Cryptography (MPTC).

Establishes a process: (not a competition for selection of a standard)

A scope organized into two classes

Class N: <u>N</u>IST-standardized primitives (Sign, PKE, Symm, KeyGen)

KeyGen = Key Generation; PKE = Public-Key Encryption; Symm = Symmetric

Class S: <u>Special others</u> (those above; FHE, ZKPoK, Gadgets)

FHE = Fully-Homomorphic Encryption; ZKP = Zero-Knowledge Proof

A scope organized into two classes

Class N: <u>NIST-standardized primitives</u> (Sign, PKE, Symm, KeyGen) KeyGen = Key Generation; PKE = Public-Key Encryption; Symm = Symmetric

Class S: <u>Special others</u> (those above; FHE, ZKPoK, Gadgets)

FHE = Fully-Homomorphic Encryption; ZKP = Zero-Knowledge Proof

Each class is organized into various categories

	Sign	PKE	Symmetric	KeyGen	FHE	ZKPoK	Gadgets
N IST specified	N1	N2	N3	N4			
${f S}$ pecial others	S1	S2	S3	S4	S5	S 6	S 7

(Using the notation updated in the 2nd public draft)

* (Public comments due by 2025-May-30)

Phase	Subphase	Required?	When
0. Call	0.1: Public Drafts (1st and 2nd*)	_	2023/2025
	0.2: Final version	Yes	X_0

* (Public comments due by 2025-May-30)

Phase	Subphase	Required?	When
0. Call	0.1: Public Drafts (1st and 2nd*) 0.2: Final version	— Yes	2023/2025 X ₀
1. Previews	1.1: Preview 1 1.2: Preview 2	Encouraged Encouraged	$\begin{array}{c} X_1 \gtrsim X_0 + 2 \\ X_2 \gtrsim X_1 + 3 \end{array}$

Preview: abstract of a planned submission, followed by public presentation

* (Public comments due by 2025-May-30)

Phase	Subphase	Required?	When
0. Call	0.1: Public Drafts (1st and 2nd*) 0.2: Final version	— Yes	2023/2025 X ₀
1. Previews	1.1: Preview 1 1.2: Preview 2	Encouraged Encouraged	$\begin{array}{c} X_1 \gtrsim X_0 + 2 \\ X_2 \gtrsim X_1 + 3 \end{array}$
2. Packages	2.1: Preliminary submission 2.2: Regular submission	Encouraged Yes	$egin{array}{c} X_3 \gtrsim X_2 + 1 \ X_4 \gtrsim X_3 + 2 \ \gtrsim X_0 \end{array}$

- **Preview:** abstract of a planned submission, followed by public presentation
- **Package:** specification, implementation, experimental evaluation

* (Public comments due by 2025-May-30)

Phase	Subphase	Required?	When
0. Call	0.1: Public Drafts (1st and 2nd*) 0.2: Final version	— Yes	2023/2025 X ₀
1. Previews	1.1: Preview 1 1.2: Preview 2	Encouraged Encouraged	$\begin{array}{l} X_1 \gtrsim X_0 + 2 \\ X_2 \gtrsim X_1 + 3 \end{array}$
2. Packages	2.1: Preliminary submission 2.2: Regular submission	Encouraged Yes	$\begin{array}{c} X_3 \gtrsim X_2 + 1 \\ X_4 \gtrsim X_3 + 2 \\ \gtrsim X_0 + 8 \end{array}$
3. Analysis	3.1: Public presentations3.2: Package updates3.3: NIST-MPTC report	Yes — Yes	2026 — (≈ 2027)

> Preview: abstract of a planned submission, followed by public presentation

- **Package:** specification, implementation, experimental evaluation
- Analysis: including series of presentations

Other notes on exploratory activities

MPTS 2025

- ► NIST Workshop on Multi-Party Threshold Scheme 2025
- Fully virtual, 2025-{Oct or Nov} (exact dates TBA)
- ▶ Will host the "1st Previews" (plans) of Threshold Call submissions

Other notes on exploratory activities

FHE = Fully-Homomorphic Encryption. MPC = (Secure) Multi-Party Computation. PIR = Private Information Retrieval. PSI = Private Set Intersection. ZKP = Zero-Knowledge Proof.

Other notes on exploratory activities

MPTS 2025

- NIST Workshop on Multi-Party Threshold Scheme 2025
- Fully virtual, 2025-{Oct or Nov} (exact dates TBA)
- ▶ Will host the "1st Previews" (plans) of Threshold Call submissions

PEC Project

- Accompany the progress of emerging Privacy-Enhancing Cryptography
 In scope: MPC, FHE, ZKP, PSI, PIR, Special Sigs, ...
- Special Topics on Privacy Enhancing Cryptography (STPPA) series

FHE = Fully-Homomorphic Encryption. MPC = (Secure) Multi-Party Computation. PIR = Private Information Retrieval. PSI = Private Set Intersection. ZKP = Zero-Knowledge Proof

Past Events WPEC 2024: Workshop on Privacy-Enhancing Cryptography 2024
 MPTS 2023: Workshop on Multi-Party Threshold Schemes 2023
 Many other diverse set of talks at the NIST Crypto Reading Club

Outline

1. Intro on NIST Crypto

2. Threshold Call and related explorations

3. Thoughts on (Emerging?) Opportunities and Challenges

"Constructed [in **1948**] to study the **performance** of stone subjected to weathering. It contains 2352 individual samples of stone, of which 2032 are domestic stone from 47 [U.S.] states, and 320 are stones from 16 foreign countries."

https://www.nist.gov/el/materials-and-structural-systems-division-73100/nist-stone-wall

"Constructed [in **1948**] to study the **performance** of stone subjected to weathering. It contains 2352 individual samples of stone, of which 2032 are domestic stone from 47 [U.S.] states, and 320 are stones from 16 foreign countries."

https://www.nist.gov/el/materials-and-structural-systems-division-73100/nist-stone-wall

How about crypto building blocks?

"Constructed [in **1948**] to study the **performance** of stone subjected to weathering. It contains 2352 individual samples of stone, of which 2032 are domestic stone from 47 [U.S.] states, and 320 are stones from 16 foreign countries."

https://www.nist.gov/el/materials-and-structural-systems-division-73100/nist-stone-wall

How about crypto building blocks?

- Which of today's crypto standards will remain valid \approx 75 years from now?
- Which new blocks should we develop/standardize to enable good crypto walls?
- Which walls (complex compositions) can be safely created out of building blocks?

"Constructed [in **1948**] to study the **performance** of stone subjected to weathering. It contains 2352 individual samples of stone, of which 2032 are domestic stone from 47 [U.S.] states, and 320 are stones from 16 foreign countries."

https://www.nist.gov/el/materials-and-structural-systems-division-73100/nist-stone-wall with the system structural sys

How about crypto building blocks?

- Which of today's crypto standards will remain valid \approx 75 years from now?
- Which new blocks should we develop/standardize to enable good crypto walls?
- Which walls (complex compositions) can be safely created out of building blocks?

... And what *crypto weather* do we need to be prepared for?

Reliability of long-lived threshold systems?

Intrusion models with proactive recovery:

Legend: H = healthy; I = intruded. Diagrams from doi:10.1007/s13173-012-0062-x

Reliability of long-lived threshold systems?

Intrusion models with proactive recovery:

Legend: H = healthy; I = intruded. Diagrams from doi:10.1007/s13173-012-0062-x

What happens in settings of continued intrusion?

- ▶ In the long-run, larger attack surface may imply larger probability of global compromise
- Mitigation: identifiable abort, proactive rejuvenation (e.g., secret-resharing)

Reliability of long-lived threshold systems?

Intrusion models with proactive recovery:

Legend: H = healthy; I = intruded. Diagrams from doi:10.1007/s13173-012-0062-x

What happens in settings of continued intrusion?

- ▶ In the long-run, larger attack surface may imply larger probability of global compromise
- Mitigation: identifiable abort, proactive rejuvenation (e.g., secret-resharing)

Important to assess: Is a proposed system suitable for a deployment setting?

Trust versus trustworthiness

It is important to match **trust** with **trustworthiness**

Trust versus trustworthiness

It is important to match **trust** with **trustworthiness**

Decrease trust requirements, by clever use of advanced crypto, e.g.:

- MPC allows collaboration while avoiding "sharing" unneeded data
- ZKP allows verifying correct behavior of another party
- FHE allows delegating computation (with data-confidentiality)

Trust versus trustworthiness

It is important to match **trust** with **trustworthiness**

Decrease trust requirements, by clever use of advanced crypto, e.g.:

- MPC allows collaboration while avoiding "sharing" unneeded data
- ZKP allows verifying correct behavior of another party
- FHE allows delegating computation (with data-confidentiality)
- Increase trustworthiness, e.g., via:
 - Standardization process and verified specification
 - Validation/certification of implementations

Other brief notes

Validation

Known-answer test (KAT) / test-vectors? How to deal with:

Non-determinism in distributed systems?

- Floating-point operations? (different results across compilers/processors)
- Combinatorial explosion of parametrizations

Related: Check the NIST Cryptographic Algorithm Validation Program (CAVP)

Other brief notes

Known-answer test (KAT) / test-vectors? How to deal with:

Non-determinism in distributed systems?

- Floating-point operations? (different results across compilers/processors)
- Combinatorial explosion of parametrizations

Related: Check the NIST Cryptographic Algorithm Validation Program (CAVP)

QV/QR

Validation

Quantum-vulnerable (QV) / quantum-resistant (QR) solutions?

- Envisioned deprecation of QV (2035?)
- QV has good references for what to functionally achieve as QR
- In the future, which settings may remain suitable for QV?

Concluding remarks

- 1. Advanced crypto $\stackrel{?}{\Rightarrow}$ advanced processes for standardization/certification
- 2. Threshold Call: an approach for exploring advanced crypto (prior to standards)
- 3. Aim: Devise recommendations about advanced cryptography (PEC + MPTC) (Will support future processes.) PEC = Privacy-Enhancing Crypto. MPTC = Multi-Party Threshold Crypto
- 4. Ample room for participation: Give feedback \rightarrow Submit \rightarrow Analyze
- 5. Privacy-preserving applications: a key space for adoption of Future Crypto
- 6. MPTS 2025: Participate (virtual event) to hear/speak thorougher elaborations

Tänan tähelepanu eest!

Thank you for your attention!

Questions?

MPTC Project

Threshold Call

Subscribe to the PEC-Forum and MPTC-Forum to receive announcements.

Emerging Advanced Cryptography: Opportunities and Challenges Presented at The Future Cryptography Conference May 21, 2025 @ Tallinn (Estonia) — luis.brandao@nist.gov