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How to build trust in cryptography?
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Ask for security proofs



Von Mikhail Kudinov @ & Antworten || [ Liste antworten| ™ || & Weiterleiten | B Archivieren | &) Junk i Loschen | Mehr v
An pgc-forum@list.nist.gov @ 23-07-2020 17:09
Betreff [pgec-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

List-ID <pqc-forum.list.nist.gov=

Dear all,

In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+ hash-based scheme. Particularly, we would like to pay attention to security proofs
of the underlying WOTS+ scheme with preimage resistance (PRE) requirement replaced by second preimage resistance (SPR) + "at least two preimages for every image”
requirements [see eq. (14) in Round 2 submission] or decisional second preimage resistance (DSPR) + SPR requirements [see Bernstein et al. “The SPHINCS+ signature
framework” 2019].

Both of these approaches are based on the claim that in the case where the given image has several preimages under some cryptographic hash function, the original preimage
is information-theoretically hidden among all preimages (see "Case 2" in the Proof of Theorem 2 in [Hilsing et al. "Mitigating Multi-Target Attacks in Hash-based Signatures”
2016] and "SM-DSPR success probability” in the proof of Claim 23 in [Bernstein et al. "The SPHINCS+ signature framewaork” 20197). Though this claim is quite reasonable in the
case of a single hash function query, the situation becomes much more complicated when one deals with a chain of hash functions like in the WOTS+ scheme.

Let h_i with i=1,....w-1 be a hash function used to obtain a value at i'th level of the WOTS+ scheme from the one at (i-1)th level. That is pk_j = h_{w-1}h_{w-2} ... h_1(sk_j) ... )),
where sk_j and pk_j are elements of secret and public key respectively and w is a Winternitz parameter (commonly w = 16). Here we assume that all bitmasks are included in h_i.
Let IMG_i be an image set of h_i, and let PREIMG_i(y) be a set of all preimages for given y taken from IMG_i. The proposed security proofs are based either on assumption that
for each y one has |PREIMG_i(y)| = 1, or that it is computationally hard to recognize whether |PREIMG_i(y}| = 1 or not. The latter is called a DSPR property [D.). Bernstein, A.
Hulsing "Decisional second-preimage resistance: When does SPR imply PRE?" 20191,

Consider the set WOTS_IMG_i = h_i(h_{i-1} ... h_1({0,1}*n) ... )) that is an image set of the whole WOTS+ chain up to level i from a set of all possible secret keys {0,1}*n (nis a
security parameter, typically equals to 256). One can reasonably expect that for a secure hash function built in the chain functions and i = 1, |WOTS_IMG_i| < |IMG_i| because of
collisions at levels 1, ..., i-1. Let WOTS_PREIMG_i(y) be a set of preimages of y under h_i belonging to WOTS_IMG_{i-1}. Having a Challenger’s signature, a WOTS+-breaking
adversary is able to choose a position in the chain where |WOTS_PREIMG_i(y)| = 1, even though |PREIMG_i(y}| > 1 for some known element y in the WOTS+ structure. In the
result, the adversary manages to forge a signature avoiding breaking SPR property (because the forgery consists of the same element used by the Challenger), and by choosing
elements having |PREIMG_i(y)| = 1 or |PREIMG_i(y)| = 1 with a proper probability, avoiding breaking DSPR property. Thus the reduction proof fails.

We note that the security proof of the original SPHINCS scheme [Bernstein et al. “SPHINCS: practical stateless hash-based signature” 2015] which is based on
PRE+SPR+undetectability (UD) assumptions does not have this flaw, though shows lower security level for the same scheme parameters. We also note that the updated detailed
security proof of the WOTS+ scheme based on PRE+SPR+UD assumptions can be found in https://arxiv.org/abs/2002.07419.

With kind regards,
Mikhail Kudinov, Evgeniy Kiktenko, Aleksey Fedorov
Russian Quantum Center (www.rgc.ru) and QApp (www.qapp.tech)

https://huelsing.net



Fixing and Mechanizing the Security Proof of
Fiat-Shamir with Aborts and Dilithium

. . I 5 .
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Abstract. We extend and consolidate the security justification for the
Dilithium signature scheme. In particular, we identify a subtle but crucial
gap that appears in several ROM and QROM security proofs for signa-
ture schemes that are based on the FFiat-Shamir with aborts paradigm,
including Dilithium. The gap lies in the CMA-to-NMA reduction and was
uncovered when tryving to formalize a variant of the QROM security proof
by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was
confirmed by the authors, and there seems to be no simple patch for it.
We provide new, fixed proofs for the affected CMA-to-NMA reduction,
both for the ROM and the QROM, and we perform a concrete secu-
rity analysis for the case of Dilithinm to show that the claimed security
level is still valid after addressing the gap. Furthermore, we offer a fully
mechanized ROM proof for the CMA-security of Dilithium in the Easy-
Crypt proof assistant. Our formalization includes several new tools and
techniques of independent interest for future formal verification results.

https://huelsing.net



What if you are not NIST?



Timeline of attacks on SSL/TLS
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TETR
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The secret TETRA
primitives
and
their security

See https://www.midnightblue.nl/research/tetraburst

éBURST



https://www.midnightblue.nl/research/tetraburst
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ISOAEC19772:2009

Information technology — Security techniques —
Authenticated encryption

\N\-‘\-\DR Withdrawn (Edition 1, 2009)

— New version available: ISO/IEC 19772:2020

Abstract

ISO/IEC 19772:2009 specifies six methods for authenticated encryption, i.e. defined ways of processing a
data string with the following security objectives: data confidentiality, i.e. protection against unauthorized
disclosure of data; data integrity, i.e. protection that enables the recipient of data to verify that it has not
been modified; data origin authentication, i.e. protection that enables the recipient of data to verify the
identity of the data originator. All six methods specified in ISO/IEC 19772:2009 require the originator and the
recipient of the protected data to share a secret key. Key management is outside the scope of ISO/IEC
19772:2009; key management techniques are defined in ISO/IEC 11770.

https://huelsing.net
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General information

Status : Withdrawn

Publication date : 2009-02

Stage : Withdrawal of International Standard [95.99]
Edition : 1

Number of pages : 29

Technical Committee : ISO/IEC JTC 1/SC 27
ICS: 35.030

RSS updates
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These attacks were found during
deployment!



Ever reviewed a proof for

a cryptographic

orotocol?

On the Tight Security of TLS 1.3: Theoretically-Sound
Cryptographic Parameters for Real-World Deployments

Denis Diemert and Tibor Jager*

University of Wuppertal, Germany
{denis.diemert, tibor.jager}@uni-wuppertal.de

Abstract

We consider the theoretically-sound selection of eryptographic parameters, such as the size of
algebraic groups or RSA keys. for TLS 1.3 in practice. While prior works gave security proofs for
TLS 1.3, their security loss is quadratic in the total number of sessions across all users, which due
10 the pervasive use of TLS is huge. Therefore, in order to deploy TLS 1.3 in a theoretically-sound
way, it would be necessary to compensate this loss with large that would be
infeasible for practical use at large scale. Hence, while these previous works show that in principle
the design of TLS 1.3 is secure in an asymptotic sense, they do not yet provide any useful concrete
security guarantees for real-world parameters used in practice.

In this work, we provide a new security proof for the eryptographic core of TLS 1.3 in the random
oracle model, which reduces the security of TLS 1.3 sightly (that is, with constant security loss) to the
(multi-user) security of its building blocks. For some building blocks, such as the symmetric record
Jayer encryption scheme, we can then rely on prior werk to establish tight security. For others, such as
the RSA-PSS digital signature scheme currently used in TLS 1.3, we obtain at least a finear loss in
the number of users, independent of the number of sessions, which is much easier to compensate
with reasonable parameters. Our work also shows that by replacing the RSA-PSS scheme with a
tightly-secure scheme (¢. g., in a future TLS version), one can obtain the first fully tightly-secure TLS

protocol.
Our results enable a ically-sound selection of for TLS 1.3, even in large-scale

settings with many users and sessions per user.

A Cryptographic Analysis of the WireGuard Protocol

Benjamin Dowling and Kenneth G. Paterson

Information Security Croup
Royal Holloway, University of London
benjamin. dowling@rhul.ac.uk, kenny.paterson®rhul.ac.uk

Abstract. WireGuard (Donenfeld, NDSS 2017) is a recently proposed secure network tunnel operating at layer
3. WireGuard aims to replace existing tunnelling solutions like IPsec and OpenVPN, while requiring les

being more secure, more performant, and easier to use. The cryptographic design of WireGuard is based on
the Noise framework. It makes use of a key exchange component which combines long-term and ephemeral
Diffie-Hellman values (along with optional preshared keys). This is followed by the use of the established keys
in an AEAD construction to encapsulate IP packets in UDP. To date, WireGuard has received no rigorous
security analysis. In this paper, we, rectify this, We first observe that, in order to prevent Key Compromise
Impersonation (KCI) attacks, any analysis of WireGuard's key exchange component must take into account
the first AEAD ciphertext from initiator to responder. This message effectively acts as a key eonfirmation and
‘makes the key exchange component of WireGuard a 1.5 RTT protocol. However, the fact that this ciphertext is
computed using the established session key rules out a proof of session key indistinguishability for WireGuard's
sing the protocol’s

code,

key exchange component, limiting the degree of modularity that is achievable when analy
security. To overcome this proof barrier, and as an alternative to performing a monolithic analysis of the entire
WireGuard protocol, we add an extra message to the protocol. This is done in a minimally invasive way that
does not increase the number of round trips needed by the overall WireGuard protocol. This change enables
us to prove strong authentication and key indistinguishability properties for the key exchange component of

WireGuard under standard eryptographic assumptions.

1 Introduction

WireGuard: WireGuard [[1] was recently proposed by Donenfeld as a replacement for existing secure communica-
tions protocols like IPsec and OpenVPN. It has numerous benefits, not least its simplicity and ease of configuration,
high performance in software, and small codebase. Indeed, the protocol is implemented in less than 4,000 lines of
code, making it relatively easy to audit compared to large, complex and buggy code-bases typically encountered with
1Psec and SSL/TLS (on which OpenVPN is based).

From a networking perspective, WireGuard encapsulates IP packets in UDP packets, which are then further
encapsulated in IP packets. This is done carcfully so as to avoid too much packet overhead. WireGuard also offers
a highly simplified version of IPsec’s approach to managing which security transforms get applied to which packets:
essentially, WireGuard matches on IP address ranges and associates IP addresses with static Diffie-Hellman keys. This
avoids much of the complexity associated with IPsec’s Security Associations/Security Policy Database mechanistus.

From a cryptographic perspective, WireGuard presents an interesting design. It is highly modular, with a k

TLS 1.3: ~36 pages
prelim, model & proof
(full width A4)

WireGuard: ~16 pages
JUST proof (full width
A4) - several small

mistakes
https://huelsing.net

The Double Ratchet: Security Notions, Proofs, and
Modularization for the Signal Protocol
Joél Alwen* Sandro Coretti' Yevgeniy Dodis?

Wickr Inc. New York University New York University
jalwen@wickr . com corettis@nyu.edu dodis@cs.nyu.edu

February 21, 2020

Abstract

Signal is a famous secure messaging protocol used by billions of people, by virtue of many se-
cure text messaging applications including Signal itself, WhatsApp, Facebook Messenger, Skype.
and Google Allo. At its core it uses the concept of “double ratcheting,” where every message
is encrypted and authenticated using a fresh symmetric key: it has many attractive properties,
such as forward security, post-compromise security, and “immediate (no-delay) decryption,
which had never been achieved in combination by prior messaging protocols

While the formal analysis of the Signal protocol, and ratcheting in general, has attracted
we argue that none of the existing analyses is fully satisfactory. To

a lot of recent attention
address this problem, we give a clean and general definition of secure messaging, which clearly
indicates the types of security we expeet, including forward security, post-compromise security
and immediate deeryption. We are the first to explicitly formalize and model the immediate

decryption property, which implies (among other things) that parties seamlessly recover if a
sage is permanently lost—a property not achieved by any of the recent “provable

given mes
alternatives to Signal.”

We build a modular “gencralized Signal protocol” from the following components: (a) eon-
tinuous key agreement (CKA), a clean primitive we introduce and which can be easily and
generically built from public-key eneryption (not just Diffie-Hellman as is done in the current
Signal protocol) and roughly models “public-key ratchets;” (b) forward-secure authenticated en-
yption with associated data (FS-AEAD), which roughly captures “symmetric-key ratchets;
and (¢) a two-input hash function that is a pseudorandom function (resp. gencrator with in-
put) i its first (resp. second) input, which we term PRE-PRNG. As a result, in addition to
instantiating our framework in a way resulting in the existing, widely-used Diffie-Hellman based
get post-quantum seeurity and not rely on random oracles in the

Signal protacol, we can ez

analysis.

Signal: ~56 pages (full
width A4) proof +
model
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So, if proofs are sound we are
done?



Algorithm vs specification

= Algorithmic description

Algorithm 2 Kyber.CPA.Enc(pk = (t.p).m

cryption

—

e

M): en-

B

b b L

e

r« {0.1}*%

t := Decompress, (t.d,)

A ~ RF*k := Sam(p)

(r.e;.es) ~ j:}' % .i:: x 3, = Sam(r)

1 o= C«:.\m;:»rq,[}uﬂi{Jr r+e;.d,)

v = Compressq (tTr+es + E}J -m,d,)
return ¢ := (u.v)

= Specification

Algorithm 5 Kveer. CPAPKE. Enc(pk, m, r): encryption

Input: Public key pk & Bé&n/m+32
Input: Message m £ B
Input: Handom coins r € B¥
Output: Ciphertext ¢ £ Biabn/Stdon/8
L N:=0
& t := Decompress (Decodey, (pk). d,)
2 p=pk+d-k-n/8
4: fori from 0 to k=1 dD
5 for j from 0 to k - 1 do

i AT = Parse(XOF(plill5))
T end for
& end for

% for ¢ from 0 to k — 1 do

10 rji] := CBD,(PRF(r. N})
11 N=N=+1
12: end for

13 for i from 0w k — 1 do

14 @, [i] = CBD,(PRF(r, N})
15 N=N+1

16 end for

17 ey = CBD.(PRF(r, N'))

18 = NTT(r)

1 u=NTT AT o) + &

20 vi=NTT Y NTT(t)T o) + €3 + Decode, (Decompress,(m. 1))

21 ¢y = Encode,_ (Compress (. d,))
22 £y '= Encodey, (Compress (v, d,.))
23 return c = (o [|cg)

e Generate matrix A € ”: “% in NTT domain

= Sample r £ H: from B,

3 5:1.||.|.;:|'||~ ") £ H‘: from H,I.

& Sample €2 € R, from B,

ru=A"r+e
& vi=t'r + ey + Decompress, (m, 1)

t ¢ i= (Compress (u, d, ), Compress, (v, d, )}

https://huelsing.net
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Inconsistent standards implementation

Sony’s ECDSA code

int getRondomNumber ()

return Y. // chosen by fair dice roll.
/| Quaraateed to be random.

Source: https://deeprnd.medium.com/decoding-the-playstation-3-hack-unraveling-the-ecdsa-random-generator-flaw-e9074a51b831
https://huelsing.net
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Side-channels

Remote Timing Attacks are Practical

David Brumley
Stanford University
dbrumley @cs.stanford.edu

Abstract

Timing attacks are usually used to attack weak comput-
ing devices such as smartcards. We show that timing
attacks apply to general software systems. Specifically,

Dan Boneh
Stanford University
dabo@cs.stanford.edu

The attacking machine and the server were in
different buildings with three routers and multi-
ple switches between them. With this setup we
were able to extract the SSL private key from
common SSL applications such as a web server
{Apache+mod_SSL) and a SSL-tunnel.

we devise a timing attack against OpenSSL. Our exper-  Interprocess. We successfully mounted the attack be-

iments show that we can extract private keys from an
OpenSSL-based web server running on a machine in the
local network. Our results demonstrate that timing at-
tacks against network servers are practical and therefore
security systems should defend against them.

tween two processes running on the same machine.
A hosting center that hosts two domains on the
same machine might give management access to
the admins of each domain. Since both domain are
hosted on the same machine, one admin could use
the attack to extract the secret key belonging to the
other domain.

Virtual Machines. A Virtual Machine Monitor (VIMM)

https://huelsing.net
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KyberSlash: Exploiting secret-dependent division
timings in Kyber implementations

Daniel J. Bernstein'?, Karthikeyan Bhargavan®?, Shivam Bhasin®", Anupam
Chattopadhyay®’, Tee Kiah Chia”, Matthias J. Kannwischer®, Franziskus
Kiefer?, Thales B. Paiva®!'%!! Prasanna Ravi®" and Goutam Tamvada®

! University of lllinois at Chicago, Chicago, 1L 60607-7045, USA
2 Academia Sinica, Taiwan
* Inria, Paris, France
! Cryspen, Berlin, Germany
“ National Integrated Centre for Evaluation, Nanyvang Technological University, Singapore
% College of Computing and Data Science, Nanyang Techunological University, Singapore
7 Temasek Labs, Nanyang Technological University, Singapore
5 Quantum Safe Migration Center, Chelpis Quantum Tech, Taipei, Taiwan
? University of Sao Paulo, Brazil
' Fundep, Brazil
"' CASNAV, Brazil
authorcontact-kyberslash@box.cr.yp.to
15 Jamuary 2025

Abstract. This paper presents KyberSlashl and KyberSlash2 - two timing vulnera-
bilities in several implementations (including the official reference code) of the Kyber
Post-Quantum Key Encapsulation Mechanism, recently standardized as ML-KEM.
We demonstrate the exploitability of both KyberSlashl and KyberSlash2 on two
popular platforms: the Raspberry Pi 2 (Arm Cortex-AT) and the Arm Cortex-M4 mi-
croprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2
and a few hours for KyberSlashl. We responsibly disclosed these vulnerabilities to
maintainers of various libraries and they have swiftly been patched. We present two
approaches for detecting and avoiding similar vulnerabilities. First, we patch the
dynamic analysis tool Valgrind to allow detection of variable-time instructions operat-
ing on secret data, and apply it to more than 1000 implementations of cryptographic
primitives in SUPERCOP. We report multiple findings. Second, we propose a more
rigid approach to guarantee the absence of variable-time instructions in cryptographic
software using formal methods.

Keywords: KyberSlash - PQOC - Kyber - ML-KEM - Timing attacks - Division
timing

https://huelsing.net
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What formal verification can do for you

* |[ncrease trust in
* security of cryptographic protocols / algorithms
* security & correctness of cryptographic implementations

* Inform certification (Needs politics!)

See also https://www.nist.gov/news-events/events/2024/07/nist-
workshop-formal-methods-within-certification-programs-fmcp-2024

https://huelsing.net
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What does formally verified mean?

Can mean many things!

* Functional correctness

* Verified side-channel resistance (usually only timing attacks)
* Verified security proof (computational vs symbolic)

(see https://cryptographycaffe.sandboxag.com/posts/formal-verification-overview/)
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TLS 1.3 (symbolic security proof

Automated Analysis and Verification of TLS 1.3:
0-RTT, Resumption and Delayed Authentication

Cas Cremers, Marko Horvat
Department of Computer Science
University of Oxford, UK

Abstract—After a development process of many months, the
TLS 1.3 specification is nearly complete. To prevent past
mistakes, this crucial security protocol must be thoroughly
scrutinised prior to deployment.

In this work we model and analyse revision 10 of the
TLS 1.3 specification using the Tamarin prover, a tool for
the antomated analysis of security protocols. We specify and
analyse the interaction of various handshake modes for an
unbounded number of concurrent TLS sessions. We show that
revision 10 meets the goals of authenticated key exchange in
both the unilateral and mutual authentication cases.

We extend our model to incorporate the desired delayed
client authentication mechanism, a feature that is likely to be
included in the next revision of the specification, and uncover
a potential attack in which an adversary is able to successfully
impersonate a client during a PSK-resumption handshake.
This observation was reported to, and confirmed by, the IETF
TLS Working Group.

Our work not only provides the first supporting evidence
for the security of several complex protocol mode interactions
in TLS 1.3, but also shows the strict necessity of recent sugges-
tions to include more information in the protocol’s signature
contents.

Sam Scott, Thyla van der Merwe
Information Security Group
Roval Holloway, University of London, UK

on both the manual and automated fronts and resulting in
the discovery of many weaknesses.

The various flaws identified in TLS 1.2 [17] and be-
low, be they implementation- or specification-based, have
prompted the TLS Working Group to adopt an ‘analysis-
before-deployment” design paradigm in drafting the next
version of the protocol, TLS 1.3 [48]. Most notably, the
cryptographic core of the new TLS handshake protocol is
largely influenced by the OPTLS protocol of Krawczyk and
Wee [35], a protocol that has been expressly designed to offer
zero Round-Trip Time (0-RTT) exchanges and ensure perfect
forward secrecy. Its simple structure lends itself to analysis
via manual and automated means, a benefit that was deemed
desirable for TLS 1.3. Although the logic of the protocol has
been simplified, the addition of 0-RTT functionality as well
as the new resumption and client authentication mechanisms
has introduced new complexity.

The overall complexity of TLS 1.3 implies that to perform
a truly complete cryptographic analysis (either manual or
tool-supported) of the entire protocol would be a substantial
undertaking, and unlikely to be completed in time for the
release of TLS 1.3,

However, given the critical importance of TLS, it is

https://huelsing.net
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Verified Models and Reference Implementations
for the TLS 1.3 Standard Candidate

Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi
INRIA
{kart.l‘:ik .bhargavan, brunc.blanchet, nadim.kcbeissitfinria.fr

Abstract—TLS 1.3 is the next version of the Transport Layer
Security (TLS) protocol. Its clean-slate design is a reaction both
to the increasing demand for low-latency HTTPS connections
and to a series of recent high-profile attacks on TLS. The
hope is that a fresh protocol with modern cryptography will
prevent legacy problems; the danger is that it will expose
new kinds of attacks, or reintroduce old flaws that were fixed
in previous versions of TLS. After 18 drafts, the protocol is
nearing completion, and the working group has appealed to
researchers to analyze the protocol before publication. This
paper responds by presenting a comprehensive analysis of the
TLS 1.3 Draft-18 protocol.

We seek to answer three questions that have not been fully
addressed in previous work on TLS 1.3: (1) Does TLS 1.3
prevent well-known attacks on TLS 1.2, such as Logjam or the
Triple Handshake, even if it is run in parallel with TLS 1.27
(2) Can we mechanically verify the computational security of
TLS 1.3 under standard (strong) assumptions on its crypto-
graphic primitives? (3) How can we extend the guarantees of
the TLS 1.3 protocol to the details of its implementations?

To answer these questions, we propose a methodology
for developing verified symbolic and computational models
of TLS 1.3 hand-in-hand with a high-assurance reference
implementation of the protocol. We present symbolic ProVerif
models for various intermediate versions of TLS 1.3 and
evaluate them against a rich class of attacks to reconstruct
both known and previously unpublished vulnerabilities that
influenced the current design of the protocol. We present
a computational CryptoVerif model for TLS 1.3 Draft-18

depends crucially on clients and servers negotiating the most
secure variant that they have in common. Securely com-
posing and implementing the many different versions and
features of TLS has proved to be surprisingly hard, leading
to the continued discovery of high-profile vulnerabilities in
the protocol.

A history of vulnerabilities. We identify four kinds of
attacks that TLS has traditionally suffered from. Downgrade
attacks enable a network adversary to fool a TLS client and
server into using a weaker variant of the protocol than they
would normally use with each other. In particular, version
downgrade attacks were first demonstrated from SSL 3 to
SSL 2 [72] and continue to be exploited in recent attacks
like POODLE [60] and DROWN [7]. Cryptographic vul-
nerabilities rely on weaknesses in the protocol constructions
used by TLS. Recent attacks have exploited key biases in
RC4 [3]. [71], padding oracles in MAC-then-Encrypt [4],
[60], padding oracles in RSA PKCS#l v1.5 [7], weak
Diffie-Hellman groups [1]. and weak hash functions [23].
Protocol composition flaws appear when multiple modes
of the protocol interact in unexpected ways if enabled in
parallel. For example, the renegotiation attack [65] exploits
the sequential composition of two TLS handshakes, the
Triple Handshake attack [15] composes three handshakes,
and cross-protocol attacks [58], [72] use one kind of TLS
handshake to attack another. Implementation bugs contribute
_ _ _
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Veritying PQC (computational security proofs)

* Barbosa, Barthe, Fan, Grégoire, Hung, Katz, Strub, Wu, and Zhou. EasyPQC: Verifying Post-Quantum
Cryptography. ACM CCS 2021

* Hulsing, Meijers, and Strub. Formal Verification of Saber’s Public-Key Encryption Scheme in EasyCrypt.
CRYPTO 2022

* Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hiilsing, Lee, and Wu. Fixing and Mechanizing the
Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023

* Barbosa, Dupressoir, Grégoire, Hilsing, Meijers, and Strub. Machine-Checked Security for XMSS as in
RFC 8391 and SPHINCS+. CRYPTO 2023

e Barbosa, Dupressoir, Hulsing, Meijers, Strub. A Tight Security Proof for SPHINCS*, Formally Verified.
ASIACRYPT 2024

* Almeida, Arranz Olmos, Barbosa, Barthe, Dupressoir, Grégoire, Laporte, Léchenet, Low, Oliveira,
Pacheco, Quaresma, Schwabe, Strub. Formally Verifying Kyber Episode V: Machine-Checked IND-CCA
Security and Correctness of ML-KEM in EasyCrypt. CRYPTO 2024
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# Real-World Verification of Software for Cryptographic Applications

by Tiago Oliveira, Andreas Hiulsing, Gaétan Wattiau, and Steven Yue from SandboxAQ; Karthikeyan
Bhargavan, Maxime Buyse, and Lucas Franceschino from Cryspen. Posted on Mar 25, 2025
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“Draw an abstract image of formal methods being applied to real-world, security-critical code.” by DALL-E.

In this blog post, we describe how we at SandboxAQ, together with Cryspen, formally verified key components of
Sandwich—an open-source, unified API that simplifies the use of cryptographic libraries for developers, enabling

crypto-agility.

Formal methods have been used successfully to produce high-assurance implementations of cryptographic
algorithms that have since been integrated into popular libraries like BoringSSL, NSS, and AWS LC. However, APIs of

cryptographic libraries are often complex to use and can be error-prone. Sandwich tackles this problem.

https://cryptographycaffe.sa

ndboxaqg.com/posts/real-

world-verification-of-

software-for-cryptographic-

application



https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications
https://cryptographycaffe.sandboxaq.com/posts/real-world-verification-of-software-for-cryptographic-applications

Act Il: Fun for academics
(the how & who)
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Formosa view

https://huelsing.net



What Formosa cannot do, yet

* Automated proofs of security or equivalence
o In progress, improving

* Verify your existing code (except if it is Jasmin code)
o Possible way out: Executable EasyCrypt

* Analyze complex protocols
o Possible in theory, complexity hard to manage in practice

* Analyze arbitrary quantum algorithms
o EasyPQC: Support for basic QROM arguments



Viewpoints

Me@Formosa

* We provide you with a tool and a programming language that allows
you to check your software and proofs

Me@SandboxAQ

* We have this code that we would like to verify



https://hax.cryspen.com/
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HAX

e Can verify RUST code (a subset)
* Can verify functional correctness (with respect to a F* spec)

e Can verify security claims in F* or other proof-assistants (Rocq,
SSProve, ProVerif)

* More automation for simple tasks
* Maintenance of bridges tricky



One way out: formally verified libraries



Libjade

Libjade

Libjade is a formally verified cryptographic library written in the jasmin programming lanquage with
computer-verified proofs in EasyCrypt. Libjade is part of the Formosa-Crypto project.

The primary focus is on offering high-assurance implementations of post-quantum crypto (PQC) primitives to
support the migration to the next generation of asymmetric cryptography. The library additionally contains
implementations of various symmetric primitives and—to enable hybrid deployment of PQC—also widely used
elliptic-curve-based schemes.

Information for users

This section contains information for anybody who would like to integrate code from Libjade into a higher-
level cryptographic library or application. If you would like to compile Libjade yourself, run tests, or reproduce
proofs, please see information for developers below.

https://github.com/formosa-crypto/libjade

Supported platforms

The jasmin compiler produces assembly, so all code in Libjade is platform specific. In the latest release of
Libjade, the only supported architecture is AMD64 (aka x86_64 or x64). All code in the latest release is in AT&T
assembly format and is following the System V AMDE4 ABI, which is used by, e.g., Linux, FreeBSD, and (Intel-
based) macOS.

Primitives available in Libjade

The latest release of Libjade includes implementations of the following primitives (asymmetric post-quantum
primitives in boldface):

» Hash functions: SHA-256, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
» Extendable output functions (XOFs): SHAKE-128, SHAKE-256

» One-time authenticators: Poly1305

» Stream ciphers: ChaCha12, ChaChaZ20, Salsa20, XSalsa20

» Authenticated encryption ("secretbox"): XSalsa20Poly1305

 Scalar multiplication: Curve25519

» Key-encapsulation: Kyber-512, Kyber-768

= Signatures: Falcon512 (verification only)

https://huelsing.net 35
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Libcrux

https://github.com/cryspen/libcrux

libcrux - the formally verified crypto library

libcrux is a formally verified cryptographic library in Rust.

Minimum Supported Rust Version (MSRV)

The default feature set has a MSRV of 1.78.0. no_std environments are supported starting from Rust
version 1.81.0.

Randomness

libcrux provides a DRBG implementation that can be used standalone ( drbg: :Drbg ) or through the rng traits.

no_std support

liberux and the individual primitive crates it depends on support no_std environments given a global
allocator for the target platform.

Verification status

As a quick indicator of overall verification status, subcrates in this workspace include the following badges:

. to indicate that most (or all) of the code that is contained in default features of
that crate is not (yet) verified.

. tc: indicate that algorithms in a crate have been verified and extracted to Rust as

part of the HACL project. Top-level APIs in these crates accessing the code from HACL may not be verified.

. m to indicate that most (or all) of the code that is contained in the default feature set is
verified.

In every case, please refer to the more detailed notes on verification in each sub-crate to learn more about
what has (or has not) been verified in the particular case.
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Symbolic vs Computational

Computational model (EasyCrypt, Coq,

SSProve, CryptoVerif, ...) Symbolic model (Tamarin, ProVerif, ...)
 Computational adversaries * Dolev-Yao adversary

o Only limitation: Interaction with o Idealized model

honest parties o Adversary limited to defined actions

o "Black-listing™ adversary actions o "White-listing" adversary actions
* Proof -> Strong statement e Proof -> ???
e Limited automation o "Proves absence of in model attacks"
* Proof fails -> ??? Good luck * Mostly automated

* No proof? -> Attack



Limitations

Results are great but

* Full workflow for Kyber took more than 3 years of many,
many people! (Still not fully published!)

* Tools are "Expert Tools"

 New proofs often need help of tool developer
e Little automation or weaker results

e Little integration between tools

* Statements must be verified!



Summa 'y BFORMOSA

CRYPTO

* We have the tools, we can achieve great results (see Kyber)
 Verifying proofs is still research

e Usability still needs improvement

* There are many different tools for different use-cases

* We are working on a fully verified PQC library!
* Check out the Formosa project (https://formosa-crypto.org/)
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FORMOSA

CRYPTO
* Effort to formally verify crypto [.a %’f{’l‘gi‘fg’ﬁ
* Goal: verified PQC ready for :
deployment =i dea
* Three main projects:
* EasyCrypt proof assistant INESC

* Jasmin programming language
* Libjade (PQ-)crypto library

* Core community of = 30—40 people &Z’Z,;a/—

INVENTEURS DU MONDE NUMERIQUE
 Discussion forum with >180 people

https://huelsing.net

MAX PLANCK INSTITUTE (" )
FOR SECURITY AND PRIVACY &1/

[BAPORTO

Radboud University %

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY
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