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Why and how do I authenticate myself?
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Identifying myself

What is “me”?
• Name?
• Date of birth?
• Personal code?
• Some biometrics?
• A combination of these?
• . . .

What is in the protocol?
• My public key,
• . . . bound to me by a certificate
• . . . that is signed by an authority
• . . . that the relying party trusts

How do I use my public key?
• I have the corresponding private key.
• I do cryptographic operations with it.
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Me and computing devices
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Devices

Can execute
PQ crypto
algorithms

Cannot execute
PQ crypto
algorithms

Can protect cryptographic material

Cannot protect cryptographic material
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What devices running authentication protocols
are there?

For user
• Computers
• Smartphones
• Secure elements
• Embedded devices
• Smartcards, tokens, dongles, . . .

• Threshold cryptography

For relying party
• Computers (servers)
• Hardware Security Modules

(HSM)

• These need to compute digital signatures
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Threshold signing

• Parties P1, . . . ,Pn hold shares sk1, . . . , skn of the signing key
• The corresponding public key pk is known to everyone
• Given a message M, parties P1, . . . ,Pn can run a protocol and produce a

signature σ

• Using pk, anyone can verify that σ is a signature on M
• This setting is particularly interesting when the verification procedure is a

“standard” one
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Support for PQ authentication

Smartcards
• Signing has been realized

• . . . for Dilithium, Falcon
• But no side-channel protection

• Side-channel protection requires
too much memory

• Falcon’s floating-point operations
are hard to protect

Threshold cryptography
• There exist threshold signing

protocols for Dilithium and Falcon
• Too inefficient for Smart-ID

• Dilithium has inspired more
efficient threshold schemes
• Verification algorithm is different

• (Thresholdizing hash-based
constructions is harder)

Key encapsulation may be simpler
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TOPCOAT — our Dilithium-inspired threshold
signature scheme

• Designed specifically for two signing parties
• Applies Dilithium’s compression techniques for public keys and signatures
• Relies on same lattice-based hardness assumptions as Dilithium

• . . . with equally efficient security reductions
• Efficient in practice

Everything OK with PQ authentication?
In practice, yes. In theory, . . .
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On details of security proofs

• There are (computational) hardness assumptions
• E.g. factoring products of large primes, finding discrete logarithms, finding

short vectors in lattices, learning with errors
• There are cryptographic primitives

• E.g. digital signature, public-key encryption, hash function
• There a security definitions of these primitives

• E.g. existential unforgeability under chosen-message attacks,
collision-resistance
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Hardness assumptions and security definitions

pk

m0

c

b∗

Specify
a program
and an API

Specify
the break

Postulate that

there is no
that causes the break
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Reductions

Propose
a “translator”

Propose
a “translator”
executable on

a quantum computer

If a computational problem is hard then a cryptographic primitive is secure
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How reductions may use
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Quantum reductions

Propose
a “translator”
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“Plausibly quantum-secure” constructions

• Some hardness assumptions do not hold in presence of quantum
adversaries. Others do
• A hardness assumption holds in presence of quantum adversaries ⇒ it holds in

presence of only classical adversaries
• Dilithium, Falcon, etc. have proofs that quantum-reduce their security to

some quantum-valid hardness assumption
• Many other constructions have proofs that only classically reduce their

security to some quantum-valid hardness assumption
• This includes TOPCOAT and other threshold lattice-based signatures
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Way forward

• Certain steps cannot be executed on a quantum computer
• Rewinding
• Gradually defining a function

– . . . that is meant to be executed in quantum superposition
• Enumerating the queries to such a function

• There are theorems stating that under certain conditions, these steps in
reductions can still be emulated by a quantum computer
• These conditions do not appear too onerous

• There is hope that we get a quantum reduction for TOPCOAT
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Authentication vs. signing

Authentication
• Takes place in a single moment of

time

• Takes place between a fixed set of
(two) parties

⇒ May use any “exotic” technology
that these parties support

Signing and verification
• There is a significant window of

time b/w signing and verification

• The set of relevant parties is not
fixed during signing

⇒ The more standardized the
technology, the better

Commonality
“Digital signature” cryptographic primitive tends to be important for both∗
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Post-quantum digital signing?

Can threshold cryptography help?
• As we said, existing threshold protocols for Dilithium are too inefficient
• But these protocols are “generic”. E.g. for any number of signers

• Also, existing implementations are “generic”
• If we try to take advantage of the details of our setting, can we overcome

the inefficiencies?
• Number of parties is 2
• The algorithm to be implemented is Dilithium

– Optimize the components and their compositions
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Secure multiparty computation (SMC)
• There’s a function (Y1, . . . ,Yn) = f(X1, . . . ,Xn) (may be randomized)
• There are n parties P1, . . . ,Pn. Party Pi has a value xi
• There is an access structure A ⊆ 2{1,...,n} if n = 2, then A = {{1,2}}

• A secure MPC protocol Π for f does the following:
• ∀i: Pi inputs xi to the protocol
• ∀i: Pi obtains yi, where (y1, . . . ,yn) = f(x1, . . . , xn)
• ∀N ⊆ {1, . . . ,n}: if N ̸∈ A, then the group {Pi}i∈N learns nothing beyond

{xi}i∈N, {yi}i∈N
• Π may provide security against passive or active corruptions

• Kinds of active security: fail-stop, identifiable abort, . . . , full security
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A common technique of SMC

• A private value v is additively shared:
• Fix a modulus N of suitable size
• Party Pi holds vi ∈ {0, . . . ,N− 1}, s.t. v1 + · · ·+ vn = v (mod N)

– (there is more, if we want security against active adversaries)

• Addition (modulo N) of private values requires no communication
• There are protocols for other operations with private values

• These are composed to a protocol for f
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Typical performance profile of SMC protocols

• Additions (and linear combinations) are “free”
• Revealing a value takes some communication

• Entering a value may be free, or take some communication, too
• Multiplications take more time / communication
• Equality checks take even more time
• Inequality checks take even (a lot) more time
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Off-/online constructions of SMC protocols

• Compute some “correlated” randomness beforehand, such that
computations are faster once the inputs to f are available

• E.g. multiplication triple: Pi holds random ai,bi,ci ∈ {0, . . . ,N− 1}
• Correlated: (a1 + · · ·+ an) · (b1 + · · ·+ bn) = (c1 + · · ·+ cn)
• With its help, multiplication reduces to linear operations and openings.

• P1, . . . ,Pn may use more heavyweight protocols to generate correlated
randomness
• This may happen during “downtime”

• Or, there may be some extra “trusted” party that generates correlated
randomness
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Correlated randomness for (in)equalities

• Faster protocols for inequalities are currently an active research area
• Involve novel forms of correlated randomness
• Proposals are often secure only against passive adversaries
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Our in-progress work
• Three parties: Phone, Server, Correlated Randomness Generator (CRG)
• Security against one of the parties:

• against actively corrupted Phone, or
• against passively corrupted Server

– Appears to give privacy against actively corrupted Server
– I believe we can turn this to security against actively corrupted Server

• (against CRG, when Phone and Server are honest)

• ca. 20 rounds of communication
• Hundreds of KB of exchanged messages
• Megabytes of correlated randomness going to Server
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Deployment?

I á

CR
seed

• Can Server and CRG both be run by a TSP?
• The same TSP?

• Isolation between Server and CRG must be
good

• CRG could be deployed offline or online

• We are going to obtain experience running
the CRG under hardware isolation

Performance?
Will it be acceptable?
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Alternative 3-party, 1-corruption deployments

I á

CR
seed

¥ Easiest to deploy

I

á

á

¥ Simplest protocol

I

á

á

auth.

auth.

¥ Simplest for phone
q No keyshare in phone
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Conclusions?

Excellent, but not hopeless. . .
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